
Solving for Bespoke Game Assets:
Applying Style to 3D Generative Artifacts

Jo Mazeika, Jim Whitehead
Computer Science Department

UC Santa Cruz
Santa Cruz, CA 95064 USA

{jmazeika, ejw}@soe.ucsc.edu

Abstract
In this paper, we present Solus Forge, a system for designing
and generating 3D Lego models from a decomposition of the
model into pieces and a series of spatial constraints over those
pieces. We also include a style specification, which provides
a series of transformations to perform on the initial model;
adding, removing or modifying various pieces. To generate
the models, we use a two-stage constraint solving process in
which we first solve for the layout of the final model before
then solving for the specific layout of the individual Lego
pieces. In this way, we provide a framework for models that
incorporates a specific set of criteria but also can be modified
to fit a designer’s needs.

Introduction
The pipeline for creating assets for 3D games is a time con-
suming and labor intensive process, primarily because most
of these assets are handcrafted by experienced 3D model-
ers. While some of this has been offset by generative tools
(Hendrikx et al. 2013), many hand-designed assets are still
required. Because of these, there is a significant benefit in
the ability to reuse and repurpose an asset multiple times.

However, this is not always possible; a rock designed for
one region of a map may look completely out of place in
a different region. There are some simple workarounds; re-
skinning and re-texturing the assets allows us to alter the
surface-level appearance, and assets can be designed to be
stretched and scaled in order to fit various spaces. However,
any deeper modifications are often as difficult as simply re-
building the model from scratch.

To this end, we desire a system capable of generating
3D artifacts from a basic specification that can be procedu-
rally modified to produce stylized variations of that partic-
ular artifact. The stylized versions should feature specific,
directed changes to the initial artifact such that a minimal
set of changes happen to the initial artifact. However, it is
not always trivial to know how a change will affect a given
artifact, especially if some of the specification calls for gen-
erative components on its own.

In this paper, we present Solus Forge, a system that allows
for the the generation of styled 3D artifacts within a sim-
plified domain, namely the domain of Lego models. Here,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Solus Forge Example Outputs

we specify our models as hierarchical decompositions with
spatial constraints, and then use a two-stage constraint solv-
ing approach to generate the output models. In this way, we
manage to not only provide generation of models that can
be modified by an arbitrary set of rules, but also generate
in a way such that we allow for generative components in
the specification. Figure 1 shows some sample models gen-
erated by the system; the two top models are the defaults,
and the bottom two are the same models, but incorporating
a “Pirate” style.

This paper continues with an overview of related work,
followed by an overview of object and style representations.
We continue with an overview of the Solus Forge system
itself, diving into the each of the two components of the sys-
tem, and end with discussions and future work.

Related Work
The process of generating stylized artifacts is a well-studied
problem, with approaches ranging from shape grammars for
Frank Lloyd Wright inspired houses or Harley Davidson
motorcycles (Koning and Eizenberg 1981; Pugliese and Ca-
gan 2002) to the recent approach of using Convolutional
Neural Networks to recreate an existing image in the style
of another (Gatys, Ecker, and Bethge 2015; Pan et al. 2016;

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

73

Champandard 2016; Isola et al. 2016). However, the sys-
tem that has come closest to the goals of this paper is Letter
Spirit (Hofstadter and McGraw 1995), a system for generat-
ing grid fonts: fonts in which all of the characters are con-
structed from segments on a three-by-seven grid. Designed
to simulate human problem solving, the system develops a
style specification that is applied to all twenty-six lower-case
letters such that all of the letters have a distinct and legi-
ble appearance. In order to ensure this is always possible,
the Letter Spirit system allows for the relaxation of the style
specification when it would make a letter unreadable or too
similar to another letter. The limitations of this system, how-
ever, come into play with its evaluation metrics. The system
requires a function for each letter which it uses to test if a
newly generated glyph resembles the associated letter. This
process works well for a system where the output is a fixed
set of artifacts with easily defined properties, however, con-
structing these functions is outside of the scope for arbitrary
generated 3D models.

We are able to confidently reduce to our generation down
to the space of Lego Models thanks to several key affor-
dances that Legos offer. First, since they are grid-aligned,
the rules for how Lego bricks combine are simple as com-
pared to the complexity of possible connections between
arbitrary 3D models. Additionally, most bricks can only
be attached together by snapping the bottom of a brick
to the top of another, further reducing the possible ways
they can combine. Due to their popularity, and their rela-
tive simplicity as compared to arbitrary 3D models, gener-
ation of arbitrary Lego structures has been well explored
(Devert, Bredeche, and Schoenauer 2006; Petrovic 2001;
Testuz, Schwartzburg, and Pauly 2013). Because of these
known properties, it is straightforward to work around the
space of physically non-viable models—i.e., models that
with properties that would cause them to be unstable or that
would violate laws of physics.

For our purposes, we leverage the power of Answer
Set Programming (ASP), a declarative problem solving
paradigm where programs represent problem specifications
with solutions that the answer-set solver can locate (Eiter,
Ianni, and Krennwallner 2009). ASP has strong genera-
tive uses, having formed the backbone of several proce-
dural generation systems in recent years (Antonova 2015;
Smith and Bryson 2014; Smith and Mateas 2011), including
specifically in 3D spaces (Antonova 2015). ASP, of course,
is by no means the only constraint solving paradigm used in
generation, as evidenced by the vast body of literature fo-
cused on using constraint solving for space layout problems
(Medjdoub and Yannou 2001; Regateiro, Bento, and Dias
2012).

Representation of Models
In Solus Forge, 3D objects are modeled as a decomposition
hierarchy, where the children of a node are its proper parts
(parts that are not equal to the whole). As such, any non-leaf
node has two or more children. However, we then need to
map the leaf nodes onto some set of Lego pieces in order to
be able to generate the model itself.

Figure 2: Semantic decomposition of the car model

Figure 3: Decomposition of the car model with group labels

To refer to the Lego pieces, Solus Forge has a library of
Lego groups, which are simply named collections of pieces.
There are two major classes of Lego group: piece groups,
which refer to a particular set of Lego pieces, arranged in
a predefined way (such as a Windshield piece, or a Flame
piece held by a plate) and volume groups, which give a spec-
ification of how to fill in a particular volume of space (rang-
ing from filling in a volume with standard bricks to doing a
complex spiral staircase made of particular curved pieces).
In addition to their base specification, groups also feature
some metadata labels (all of the groups that involve wheels
are labeled as such) as a way of assisting in searching for
groups with a particular property. And so, the hierarchy is
an organization of these Lego groups into clusters based on
a human designers intuition about a model.

Consider the diagram shown in Figure 2, which presents
the hierarchical decomposition for the car shown in the up-
per left of Figure 1. Each node in the tree is labeled with its
semantic meaning (Cabin, Wheel Plate, etc.), to show how
this decomposition of the object looks. This structure also
includes information about which Lego groups the different
nodes of the tree represent, as shown in Figure 3. For in-

74

stance, in this model, we want the front of the cabin (”Cabin
Front”) to map to a windshield piece and so we specify that
that leaf represents ”lg windshield” (the name of the Lego
group that represents a windshield piece). The semantic la-
bels have no significance within the system itself other than
forming unique identifier for different parts of the object;
all of the information needed for generation comes from the
Lego groups themselves.

In this way, we have a structured representation of the
model, where the Lego groups are organized into a hierarchy
of parts and wholes. However, this part-whole information
paints an incomplete picture of how to construct the object.
Without positional information, relative or absolute, the sys-
tem would have no way of knowing, for instance, that the
wheels of the car described should be at the bottom of the
model.

To solve this issue, the structure tree also incorporates
a number of positional constraints between pairs of Lego
groups, allowing the designer to specify the bounds on the
spatial relations between pairs of groups. These constraints
form a graph, showing how the different components of the
model relate to each other. This graph is not necessarily
dense, but must be fully connected over the set of groups.

These constraints allow us to define where a group is lo-
cated relative to another. Typically, a group will be located
on the surface of another (because of the connections defined
by Legos, this is almost always that one group is immedi-
ately above or below the other), with constraints on where
on that surface the group can be located. A common exam-
ple of this is placing the wheels of a car not only underneath
the main body of the car, but also specifically at the front
and back of said car.

Additionally, if two groups are on the same surface, con-
straints can specify a range for how far apart the groups are
allowed to be. Typically this is expressed as ways of keeping
distance between two pieces (the couch must be three pegs
back from the television), but these constraints also cover
containment operations (the couch and television must both
be inside the walls) and embedded pieces (a window embed-
ded into a wall).

These positional constraints are not required between ev-
ery pair of groups, and in some structures, the graph of these
relations can be quite sparse. For example, in a given sce-
nario it might be fine if the furniture of a living room is ar-
ranged any which way, but only as long as the couch faces
the TV. In that case, a single constraint would specify the rel-
ative positions of the couch and the TV, with the positions
of everything else left unconstrained and free.

In particular, in the ASP file that represents our model, we
have the following:

• A list of the individual Lego groups that make up the
model

• The tree structure that organizes the groups

• The spatial constraints that exist between the different
groups

So, in our car example, we have the following set of posi-
tional constraints, as shown in Figure 4:

Figure 4: Car Part Adjacency Graph

1. The cabin front and back (represented as simple bricks in
the final model) are placed at the top of the front and back
of the car base, respectively.

2. The wheels and the plate they connect to are also placed
on the bottom of the front and back of the car base, and
the wheels are attached to the pegs on the side.

3. The sides of the car are placed on their respective sides of
the model.

Representation of Style
Style is a property of design that is hard to identify or quan-
tify. It can be defined as “a replication of patterning. . . that
results from a series of choices made within some set of con-
straints” (Meyer 1979), which is a useful framework for us
to work with in. Under this definition, in order to describe a
style in an operationalized manner, we first need to describe
the constraints that the style places upon the system. With
those in place, we claim, the space of choices that the gen-
erator can make will necessarily feature the patterning that
would make up a style.

While the qualities, choices and insights that lead to the
creation of a particular style are an unknown quality, we
choose to sidestep that by assuming that the user of Solus
Forge has a particular set of constraints that expresses their
style already in hand. In order to ensure that any particular
style can be represented, we want a representation that errs
on the side of being overly general.

To this end, the style is included as a series of ASP rules
that are resolved during the first phase of generation. We
incorporate the following classes of rules into our system:

• Adding additional Lego groups to the model, specifying
at least one additional constraint to incorporate them into
the model

• Removing Lego groups from the model, essentially nulli-
fying any constraints that they are involved with.

• Replacing constraints or groups with another constraint or
group.

• Modifying the color of a groups pieces.

75

Note that we make no claim about this being an all en-
compassing list; merely that this is the list of functionality
that we have incorporated into our system thus far.

However, at this point, we run headlong into a problem: In
order for our system to make directed style choices to a 3D
model, we first need to be able to identify the different parts
of that model—after all, the style for the wheels of a car is
going to be vastly different that the style for the windows.
However, in a generic 3D model, it is not clear where one
part of a model ends and the next begins, nor what those
parts should be.

To solve this, we leverage that the model is broken up
into the well-specified Lego groups mentioned before. Each
of these is labeled with a number of properties and the style
rules can leverage these built-in labels to indicate whether or
not a given rule should apply to a given group.

For the styles, we include the following affordances:

• Add in an additional group: The style can add additional
Lego groups to the model. In order to do so, it must also
include a relational constraint tying the group to another
that already exists in the model, some picking a group
either arbitrarily or by using the metadata embedded into
the groups.

• Remove a group: The style can remove Lego groups from
the model, identifying the groups to remove either by the
name of the group or by a given metadata tag. This neces-
sarily invalidates any constraint that the group is involved
with.

• Replace a group: The style can, instead of removing a
group, can replace it with a different group instead, allow-
ing the constraints associated with the old group to carry
over to the new group.

For this paper, we present the pirate style shown on the
bottom two models of Figure 1. This style is made of the
following rules:

• The inclusion of the treasure chest, the cannon, and the
flag, the last of which is comprised of three separate
pieces (the flag itself, the pole and the connector plate).

• The chest is placed either inside a volume group, or at the
back of the model. The flag and the cannon are placed on
top of some part of the model.

• Sloped-piece groups are removed (more as a point of
demonstration than any innate pirateness)

• The color scheme is updated to reflect a more wood-and-
stone look, focusing on the use of brown and grey.

As ASP rules, the rules for manipulating the pieces is as
follows:
nodeRef(name("Cannon")).
pieceRef(size(8,6,2, "Cannon1"),

parent("Cannon")).
focusGroup("Cannon","Cannon1").

nodeRef(name("Flag")).
pieceRef(size(1,10,1,"Flagpole"),

parent("Flag")).
pieceRef(size(2,1,1,"Flagholder"),

parent("Flag")).
pieceRef(size(1,5,3,"PirateFlag"),

parent("Flag")).
attachRef("Flagholder",

"Flagpole", (1,1,0)).
attachRef("Flagpole",

"PirateFlag", (0,5,1)).
focusGroup("Flag", "Flagholder").

nodeRef(name("Chest")).
pieceRef(size(6,6,2,"TreasureChest"),

parent("Chest")).
focusGroup("Chest", "TreasureChest").

styleAdd("Cannon", onTop,1).
styleAdd("Chest", inside,1).
styleAdd("Flag", onTop, 1).
styleAdd("Flag", onSide, 1).

removeGroups("slope").

With this style in place, we are ready to begin the process
of generating our models.

System Overview
Using the 3D modeling approach described above, com-
prised of a structural decomposition combined with a po-
sitional graph, and the style specification, it is now possible
to describe the Solus Forge system for applying a style to a
3D model and generating a realized artifact. Figure 5 shows
the system diagram for this process.

To perform this process, we use a two-step ASP approach
by which we first solve for the positions of each of the Lego
groups in the model in the Sketching phase, and afterwards
solve for the individual Lego pieces in the model in the Re-
alization phase. By separating out the stages like this, we
can gain a number of benefits. Firstly, we are able to swap
out either part of the system with an alternate implementa-
tion without impacting the other. This allows not only for
incremental progress (or bug fixing) on each part indepen-
dently, but also leaves room to rebuild one of the parts in a
completely separate paradigm without impacting the other.
Secondly, it gives the affordance of being able to look at and
analyze different sketches without realizing them, which al-
lows us to better see how the different parts of the model are
interacting with each other.

Sketching
First, we use the positional constraints between the groups,
along with the size data encoded into the groups themselves,
to build a sketch of the final output. In this sketch, none of
the pieces that actually make up the final model are in place,
but the sizes and positions of all of the Lego groups are final-
ized. Because our constraints can be somewhat loose, there
are often a number of different sketches that can be produced
from a single model, each with the property that they have a
different arrangement of the Lego groups. These differences
can be subtle, but they will always be noticeable to an ob-
server.

For our pirate car, we first take our new graph, as shown
in Figure 6, and set up our constraint problem to solve for

76

Figure 5: Solus Forge System Diagram

Figure 6: Final Car Graph after Pirate Style (Red are newly
included groups)

the positions and sizes of each of the groups in space. Our
coordinate system is based on the fact that, in general, Legos
have a grid structure – one unit in the X or Z axes is equal
to moving one peg, and one unit along the Y axis is equal
to the height of a single plate (a brick is exactly three plates
tall).

Each of the constraints specified has an underlying logi-
cal representation - for instance, saying that group A is ”Un-
der Front” relative to Group B means that group A is under
group B (ie, group A’s Y-position is such that it ends adja-
cent to the bottom of B) and that group A is towards the front
of B (ie, group A’s X position is as far forward as possible,
while still being directly underneath B). From these, we able
to create a 3D layout (the sketch) of all of the groups.

To that end, our underlying engine for the sketching step
takes on a few parts. First, we have some definition refer-
ences:

• Space definition - the space in which the pieces can be
placed is constructed as a finite range in 3 dimensions

• Piece group definitions - Each piece group has a fair bit of
associated data - each piece group needs to have its size
specified, and all have metadata that is leveraged by the
styles.

• Volume group functions - Since volume groups can be of
any size, we include rules for choosing their size here.
Some of these choices are straightforward (a rectangular
wall can simply pick a size in each dimension), but others
can be more complex, such as the sloped roof we see in
the building model. For that, we specify the position, size
and orientation of each of the rows of bricks based on the
size and location of the footprint of the group overall. This
turns one simple group into a large number of individual
groups for the purposes of further generation.

We then have a set of rules for handling the constraints.
Each of these is handled differently (as all of the constraints
are distinct); however, positional constraints follow a com-
mon pattern in that they all limit the space of choices for a
group to a range specified by another groups position and
size. For example, assume that we have group A on top of
group B. In this case, we fix group As vertical position to
be exactly adjacent to the top of group B (requiring group
Bs vertical position and height to be known, of course), and
restrict group As position on the other two axes to intersect
with group Bs. In the system, the rule for deriving positions
in an ”onTopOf” relations is represented as:

groupPos(y,Y+J, B) :-
onTopOf(name1(B), name2(A)),
groupSize(y,Y,A),
groupPos(y,J,A).

{groupPos(D,X1..X1-1+I1-I,B)} = 1 :-
groupPos(D,X1,A), groupSize(D,I1,A),
groupSize(D,I,B), notY(D),
onTopOf(name1(B), name2(A)),
I <= I1.

77

{groupPos(D,X1-1+I1-I..X1,B)} = 1 :-
groupPos(D,X1,A), groupSize(D,I1,A),
groupSize(D,I,B), notY(D),
onTopOf(name1(B), name2(A)),
I >= I1.

where ”notY(D)” matches with any dimension other than the
y-axis.

Finally, for each group, we pick its location in space. Be-
cause of the restrictions given to us by the constraints, we
know that all of these positions are going to be valid and
that our model fit all of our specifications, but, for any un-
derconstrained parts of the model, we allow completely free
choice. It is here where our possibility space of models is
created.

These rules1, when combined with a model and style
specification, produce a sketch, which is captured both in
a human readable JSON file, as well as a long list of facts
that is handed off to the the Realization step.

Realization
Once all of the positional information is in place, the sys-
tem then needs to realize the sketch. For our Pirate car, this
step is trivial, since all of the Lego groups included are piece
groups. As such, the only step that this step takes is to spec-
ify the particular pieces that make up the different groups in
the locations determined by the previous step. However, for
the house model, we need to a fair bit of solving to construct
the walls of the model, and the roof of the base model.

For this, we specify a list of possible pieces—for the
walls, this is a set of basic Lego bricks and plates, and
we also include a set of sloped pieces for the roof—as a
list of legoCollection/3 facts, specifying the size of
each piece. We also include our information from the sketch,
transforming into a set of voxel coordinates that need to be
filled as a list of target/3 facts—including the space of
each volume group, then subtracting out the space encapsu-
lated by the piece groups.

We then solve for a collection of pieces (and their loca-
tions) such that the following criteria are met:
• The target volume, and only the target volume, is covered

with pieces.

pos((X,Y,Z),X,Y,Z) :- target(X,Y,Z).
{ blank(N);

legoPiece(N, loc(I,J,K), size(X,Y,Z)) :
legoCollection(X,Y,Z),
target(X+I-1,Y+J-1,Z+K-1)} = 1
:- pos(N,I,J,K).

coveredBy(N,I1,J1,K1) :-
legoPiece(N, loc(I,J,K), size(X,Y,Z)),
I1 = I..I+X-1,
J1 = J..J+Y-1,
K1 = K..K+Z-1.

covered(X,Y,Z) :- coveredBy(N,X,Y,Z).
:- target(X,Y,Z), not covered(X,Y,Z).
:- covered(X,Y,Z), not target(X,Y,Z).

• No two pieces used intersect with each other

1For a full description of the rules, please view the source at
https://github.com/jomazeika/SolusForge

:- pos(N,X,Y,Z),
2 { coveredBy(Ni,X,Y,Z) }.

• No two identical pieces are directly on top of each other
(decreasing the potential for free-standing sections of the
model)

:- legoPiece(N1, loc(I,J,K), size(X,Y,Z)),
legoPiece(N2, loc(I,J+Y,K), size(X,Y,Z)).

While a large number of solutions exist that meet the
above criteria, we (from previous Lego literature) know that
using the fewest number of Lego pieces in our final model
will help increase the overall stability. So, we include a state-
ment to optimize our model to use the fewest pieces possi-
ble:

#minimize {1@1,N,L,S: legoPiece(N,L,S)}.

Our final model is pictured in Figure 1.

Discussions and Future Work
While SOLUSForge produces good results thus far, it is not
without its limitations. First, the style descriptions are very
formalist, focused solely on describing the changes in terms
of physical components of the Lego model. While deep
changes are certainly possible, the modifications presented
here can be described as more of aesthetic and construc-
tion choices. To break away from this formalist approach,
a much richer representation of both the structures and the
styles would be required. However, this work has yet to even
fully explore the depths of the styles as proposed here.

For instance, one obvious extension of the work here
would be to blend and merge different styles together to
form new styles that contain the properties of both. The
simplest approach would be to take subsets of the rules
from each initial style, but other, more sophisticated ap-
proaches could lead to more interesting and expression re-
sults. One technique that would likely be promising is con-
ceptual blending, since the spaces around the style rules is
easy to manage.

Secondly, more work on the structure models would allow
us to greatly increase the expressive range of the models in-
nately, which would in turn allow us more expressiveness in
the styles we can represent. The next immediate improve-
ment would be the inclusion of non-deterministic nodes into
the models, which would allow for an explosion of expres-
sivity in the Sketching step.

Conclusions
In this paper we prevent a pipeline for using constraint solv-
ing to generate 3D Lego models, in a way that allows for the
style of the models to be modified to fit a designer’s needs.
In this way, we have provided one method for generating 3D
objects that meet a particular design criteria while keeping
their primary attributes consistent.

References
Antonova, E. 2015. Applying Answer Set Programming in
game level design. Master’s thesis, Aalto University, Espoo,
Finland.

78

Champandard, A. J. 2016. Semantic style transfer and
turning two-bit doodles into fine artworks. arXiv preprint
arXiv:1603.01768.
Devert, A.; Bredeche, N.; and Schoenauer, M. 2006. Blind-
builder: A New Encoding to Evolve Lego-like Structures.
In European Conference on Genetic Programming, 61–72.
Springer.
Eiter, T.; Ianni, G.; and Krennwallner, T. 2009. Answer
Set Programming: A Primer. In Reasoning Web. Semantic
Technologies for Information Systems. Springer. 40–110.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2015. A neural
algorithm of artistic style. arXiv preprint arXiv:1508.06576.
Hendrikx, M.; Meijer, S.; van der Velden, J.; and Iosup, A.
2013. Procedural Content Generation for Games: A Survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications 9(1):Article 1.
Hofstadter, D., and McGraw, G. 1995. Letter spirit: Esthetic
perception and creative play in the rich microcosm of the
roman alphabet. In Fluid concepts and creative analogies,
407–466. Basic Books, Inc.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2016. Image-
to-image translation with conditional adversarial networks.
arXiv preprint arXiv:1611.07004.
Koning, H., and Eizenberg, J. 1981. The language of the
prairie: Frank lloyd wright’s prairie houses. Environment
and Planning B: Planning and Design 8(3):295–323.
Medjdoub, B., and Yannou, B. 2001. Dynamic Space Or-
dering at a Topological Level in Space Planning. Artificial
Intelligence in Engineering 15(1):47–60.
Meyer, L. B. 1979. Toward a theory of style. In Meyer,
L. B., and Lang, B., eds., The Concept of Style. University
of Pennsylvania Press. 3–44.
Pan, Y.; Burnap, A.; Liu, Y.; Lee, H.; Gonzalez, R.; and Pa-
palambros, P. 2016. A quantitative model for identifying
regions of design visual attraction and application to auto-
mobile styling. In Proceedings of the 2016 Internation De-
sign Conference.
Petrovic, P. 2001. Solving LEGO Brick Layout Problem Us-
ing Evolutionary Algorithms. In Proceedings to Norwegian
Conference on Computer Science.
Pugliese, M. J., and Cagan, J. 2002. Capturing a rebel:
modeling the harley-davidson brand through a motorcycle
shape grammar. Research in Engineering Design 13(3):139–
156.
Regateiro, F.; Bento, J.; and Dias, J. 2012. Floor Plan Design
using Block Algebra and Constraint Satisfaction. Advanced
Engineering Informatics 26(2):361–382.
Smith, A. J., and Bryson, J. J. 2014. A Logical Approach to
Building Dungeons: Answer Set Programming for Hierar-
chical Procedural Content Generation in Roguelike Games.
In Proceedings of the 50th Anniversary Convention of the
AISB.
Smith, A. M., and Mateas, M. 2011. Answer Set Program-
ming for Procedural Content Generation: A Design Space
Approach. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3):187–200.

Testuz, R.; Schwartzburg, Y.; and Pauly, M. 2013. Auto-
matic Generation of Constructable Brick Sculptures. In Eu-
rographics (Short Papers), 81–84.

79

