
Solusforge: Controlling the Generation of the 3D models with
Spatial Relation Graphs

Jo Mazeika
Univ. of California Santa Cruz

Dept. of Computer Science
jmazeika@soe.ucsc.edu

Jim Whitehead
Univ. of California Santa Cruz
Dept. of Computational Media

ejw@soe.ucsc.edu

ABSTRACT
In this paper, we propose Solusforge, a system for automatically
generating Lego models from a graph of the components’ spatial
relationships. �e system uses a two step constraint solving ap-
proach in which the spatial layout is solved for �rst, followed by
the speci�c pieces that make up the model, thereby allowing us
to explore two separate solution spaces independently. �is tech-
nology has many uses, including in games featuring a system of
snap-together pieces, including Kerbal Space Program, Beseiged,
and Spore. While many of these games involve procedurally aug-
menting human generated design, none of them feature a fully
procedural system for generating the artifacts within that space.

CCS CONCEPTS
•Computing methodologies→ Shape modeling; •�eory of
computation→ Constraint and logic programming;

KEYWORDS
Lego; Procedural Generation; Constraint Solving
ACM Reference format:
Jo Mazeika and Jim Whitehead. 2017. Solusforge: Controlling the Gen-
eration of the 3D models with Spatial Relation Graphs. In Proceedings of
FDG’17, Hyannis, MA, USA, August 14-17, 2017, 4 pages.
DOI: 10.1145/3102071.3106348

1 INTRODUCTION
Procedural content generation techniques are o�en used in games
to create the spaces where gameplay takes place, such as planets,
terrain, caves, and levels. Less common is the use of procedural
content generation techniques for creating in-game 3D objects,
which is primarily focused on vegetation and buildings, though
with occasional use outside these domains (e.g., the procedural
weapons in the Borderlands series) [7]. Generation of 3D objects in
games usually takes the form of a one-way generation process: the
algorithm begins in one location, and builds out content from there.
For example, the typical approach for tree or building generation is
to use generative grammars (or L-systems). �ese systems start at a
speci�c location, and then build out the content in space following
the grammar rewrite rules.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FDG’17, Hyannis, MA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5319-9/17/08. . . $15.00
DOI: 10.1145/3102071.3106348

While grammars and other one-way constructive algorithms are
e�ective at creating 3D objects, they have several shortcomings.
First, due to the directionality of generation, any change made to
geometry created early in the process will have signi�cant ripple
e�ects on the remainder of the object. A further drawback of one-
way generation approaches is their limited support for modularity.
Ideally we would like to generate objects via the composition of
several sub-pieces, each of which may themselves be generated.
Grammar based approaches support this to some degree via speci�c
rewrite rules which represent the construction of a particular sub-
piece. However, grammar-based approaches are limited by the
di�culty of predicting all of the ways a sub-piece may geometrically
interact with an emerging model. For example, a sub-piece placed
via a grammar may accidentally intersect other parts of the model.
In order to support generation of 3D objects out of compositions of
sub-parts, it is necessary to express spatial relationship constraints
(e.g., above, beside, next to, etc.) among the sub-pieces, which are
then evaluated using a constraint solving system. �is permits
sub-pieces to be de�ned independently of one another, and then
combined to create a spatially consistent complete model.

�is paper presents our �rst steps at creating a system for proce-
durally generating 3D objects modeled as a composition of multiple
sub-pieces. Our system, Solusforge, is a two stage generative sys-
tem for the generation of 3D structures. Solusforge takes as input a
hierarchical speci�cation of the various parts of the �nal product,
as well as the relative positional constraints that exist between
each of these parts. In the �rst stage, Solusforge generates a layout
where the spatial positions of each of the parts are �xed. In the
second stage, this layout is converted into the speci�c pieces used
in the underlying representation, which are then used to build the
�nal intended artifact.

To reduce the overall complexity of the problem, we focus on
generation of a class of useful connected block objects, speci�cally
Lego models. Lego models have appeared in a wide range of Lego-
themed video games. As well, snap-together piece models appear
in other games, such as Kerbal Space Program, Besieged, and Spore.
As compared to the full complexity of 3D object generation, Lego
models have the bene�t of being created from a set of voxel-like
blocks created on a grid, and tend to have less complex geometries
than the full set of possible 3D models. However, the large number
of existing Lego models demonstrates the wide expressive range
possible even under the constraints of the Lego block system.

In the remainder of the paper we begin with an overview of
related work in Section 2. Section 3 presents an overview of the
Solusforge system, before diving into details of the 3D object repre-
sentation in Section 4. Section 5 then details the two-phase process

FDG’17, August 14-17, 2017, Hyannis, MA, USA Jo Mazeika and Jim Whitehead

Figure 1: Two sample outputs; a car model and a twin-
squares model

(sketch, then realization) for realizing 3D objects such that they are
consistent with a set of spatial constraints.

2 PRIORWORK
Game asset generation is a rich �eld of research, and work has
been done in a wide array of domains, including trees [2], caves [8],
buildings [11, 17] and even entire cities [12]. �ese systems all use
a variety of techniques, but most of them lean heavily on L-system
grammars, which allow for the organic evolution of the artifacts.

However, in this paper, our technology of choice is constraint
solving, and more speci�cally Answer Set Programming. Answer
Set Programming (ASP) is a declarative problem solving paradigm
in which the programs represent the speci�cation of problem, which
is solved by executing the program in an answer-set solver [4]. In
particular, we use Gringo (version 5), the chosen language of the
Potassco ASP project.1

In recent years, several Procedural Generation systems have
used ASP as the backbone of their generative process [1, 15]. For
generation tasks, a core strength of ASP is the ability to carve away
undesirable portions of the expressive range of a generator without
having to rede�ne the base generative space.

However, ASP is not the only constraint solving paradigm used
for procedural generation. Merrell in [10] describes a system that
extrapolates out a larger area from a much smaller model, and there
is an entire literature devoted to using constraint solving for space
layout problems [9, 14].

Finally, there are a number of papers on generative Lego struc-
tures, meaning that the physical properties of Lego bricks are well
modeled. Several systems have been implemented to generate arbi-
trary free-standing Lego structures [3, 5, 13, 16]. �e baseline struc-
ture of Legos, rectangular bricks that can connect top-to-bo�om, is
very simple to represent and reason over within a computational
system (similarly to voxels), and because of these well-known phys-
ical properties, we can worry less about a model being nonviable.

3 SYSTEM OVERVIEW
Solusforge is a system for generating Lego models from a high-
level hierarchical representation of the structure, which we call the
speci�cation of the structure. In the speci�cation, we incorporate
all of the positional constraints of the model, as well the hierarchy
of the di�erent base-level components of the model.

1h�ps://potassco.org/

Figure 2: Hierarchical decomposition of a Lego car, with the
node representing Lego groups highlighted

From the speci�cation, we generate a sketch. A sketch �xes
the particular sizes and positions of the components contained in
the speci�cation. Depending on the constraints and components,
multiple sketches can be created from a single speci�cation. �e
di�erences between the sketches all are visually distinct, which
allows a user to si� through the sketches to �nd ones that meet
particular criteria, or to provide alternate options for the realization.
�en, we have the realization step. In this, we take the sketches
and decide on a con�guration of Lego bricks to �ll out the sketch
so that the �nal model can be realized. �is step mainly focuses on
solving for the sets of pieces that �ll in speci�ed volumes of spaces.
�ere can be multiple di�erent layouts produced from the same
sketch, representing di�erent possible realizations into Lego bricks.

4 OBJECT REPRESENTATION
In order to generate 3D Lego objects, we need a way of encoding
our models that allows for expressivity both from the human author
and the generative system itself.

To that end, we developed a hierarchical object representation
using a tree structure. �e format is a decomposition hierarchy,
where the children of a node represent the proper parts—or parts
that are not equal to the whole—of that node. For instance, consider
the decomposition of a Lego car shown in Figure 2. At the bo�om of
the tree are indivisible leaves, the portions of the whole that cannot
be subdivided further, and that ground out into actual collections
of Lego bricks. �ese collections are called “Lego groups,” and the
object representation can be seen as a way of organizing these Lego
groups. Referring back to our car example, Figure 2 shows the
di�erent Lego groups within the decomposition, highlighting the
nodes in question.

Lego groups are divided, broadly, into two categories: piece
groups that represent a �nite and �xed collection of pieces, and
volume groups that instead represent a volume of space to �lled in
by some combination of pieces. �is distinction will be important
in the generation process, as the system treats these separately for
two reasons.

First, volume groups are allowed to intersect and overlap ar-
bitrarily with other groups, while the intersection of two piece

https://potassco.org/

Solusforge: Controlling the Generation of the 3D models with Spatial Relation Graphs FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 3: �e graph of constraints on the car model

groups is strictly prohibited. �is allows for expression of concepts
like “A window is placed in the middle of a wall” and “Two rooms,
which have their walls represented as a volume group, share a wall”
without having to break up the representations in counterintuitive
ways. Because of these, we have our second reason, namely that
the generator separates out from the rest of the spatial constraint
solving, the step in which it solves for the precise con�guration of
bricks that make up a volume group. �is will be detailed later, in
the description of the generation process.

Of course, in order to say where two groups are relative to each
other requires additional information in the object representation
beyond the simple hierarchy. So, in addition to the decomposition
hierarchy above, we also include a general graph of constraints that
exist between the di�erent nodes. �ese constraints are positional
information, such as a piece group inset to a volume group, or a
piece group atop of another piece group. �is allows us to constrain
the relative positions of Lego groups as much or as li�le as we need,
barring some �xed properties. For our car model, Figure 3 shows
the graph of constraints.

Formally, an object representation is as follows:
First is a list that describes the tree. �e �rst line always refers to

the root, and each subsequent line has the ID of the node (typically
a human-readable name, but it can be any unique string), the name
of its parent, and the name and parameters of the associated Lego
group, if any. For instance, consider the example of the car shown
in Figure 1. �e representation of the hierarchy looks like:

Root.
Base (lg CarBase)→ Root.
Wheels→ Root.
FrontWheelPlate (lg PlateWithWheels)→Wheels.
BackWheelPlate (lg PlateWithWheels)→Wheels.
Cabin→ Root.
CabinFront (lg WindshieldWithBase)→ Cabin.
CabinBack (lg BrickVolume)→ Cabin.
CabinSides→ Cabin.
CabinSideL (lg SplayedPlatesL)→ CabinSides.
CabinSideR (lg SplayedPlatesR)→ CabinSides.

Next is the set of constraints required to ensure that all of the
pieces are in their correct place, forming the graph shown in Figure

3. In the �le, these are represented in the following way:

FrontWheelPlate→ Base (UnderFront).
CabinFront→ Base (TopFront).
…

5 OBJECT REALIZATION
With our object speci�cation in place, we now need to generate a
Lego model from it. Clingo, an ASP solver, is the primary technol-
ogy [6] use for both the Sketch and Realization steps in Solusforge.
In this way, our system �ow is simply to setup the constraint solving
problems, pass them to Clingo, and interpret the returned answer
set or sets. While the order of statements in ASP �les doesn’t ma�er,
di�erent chunks of the �les are grouped together for readability
and comprehension2.

5.1 Sketch Step
�e sketch step solves for the sizes and positions of all of the groups
in an object, providing a �xed layout for the �nal model. �is step
takes as input the object speci�cation. First, we setup some initial
machinery — bounds on the overall size of the model, and the rules
for how to handle the data from the speci�cation.

We list all of the Lego groups from the speci�cation, including
their name and their size, as well as all of the constraints from the
speci�cation’s graph. Finally, we include one �nal set of common
sense constraints — no two piece groups can intersect each other
in space. Since piece groups represent physical Lego pieces, their
intersection would be the equivalent of physical Lego pieces in-
tersecting each other. However, volume groups can be intersected
by piece groups and other volume groups. �is allows us to repre-
sent windows inserted into walls and two rooms sharing walls in a
simple fashion.

We can now solve for the sketches, which consist of the posi-
tions and sizes for all of the Lego groups. By collecting multiple
variations, and adjusting for the models being o�set relative to
each other, we can construct the complete possibility space for the
sketches that can be produced by the speci�cation. While some of
the changes between the sketches may be subtle, they are notice-
able and non-trivial compared to the di�erence between results in
the next step.

For instance, let’s refer back to the car example. Here, we have
the constraints and groups shown in Figure 3. We list all of the
groups as follows, referring to them not by the name of the node,
but the name of the underlying Lego group:

• Piece Groups:

“Base”, (10,1,4)
“CabinFront”, (3,4,4)
“CabinSideR”, (6,3,2)
“CabinSideL”, (6,3,2)
“FrontWheelPlate”, (1,2,6)
“BackWheelPlate”, (1,2,6)

• Volume Groups: “CabinBack”
�e numbers in each of the piece groups represent the sizes of

each of the groups. We also include all of the constraints, similarly
to how they were referred to in the input �le, consisting of the pairs
of pieces and the description of how they relate to each other.
2See h�ps://github.com/jomazeika/SolusForge for detailed code

FDG’17, August 14-17, 2017, Hyannis, MA, USA Jo Mazeika and Jim Whitehead

From this, we solve for the positions of every group, as well as
the sizes for the volume groups.

5.2 Realization Step
Once we have a sketch—either from the Sketching step, or from
some other process—we need to realize it into actual Lego bricks.
�is process is very straightforward for piece groups, which simply
get transformed into their respective pieces.

However, this process is less straightforward for the volume
groups, as these don’t have a speci�c representation as pieces, both
because they don’t need to have a speci�ed size in the model, but
also because of the arbitrary intersections that can occur with them.
So, we need to �nd the set of bricks that exactly �ll in the volumes,
and only the space occupied by the volumes.

First we specify the set of Lego bricks that the system can use
to �ll in the volumes. �is choice comes with trade-o�s: having
more pieces to choose from, and smaller pieces included, leads to
greater precision over what kinds of shapes can be �lled in but
increases the runtime as the space of possible answers increases.
So, we only consider a set of eight bricks (ranging from 2x1 to 6x2
in dimension).

Once we have those in place, our next step is to set up the
problem. We use a lot of the information from the sketch, including
the size of the space as well as the positions and locations of all of
the Lego groups. To do this, the system views the volume groups
as an empty set of cells (unit volumes) that need to be �lled in.
Duplicate cells are ignored, i.e., cells that belong to two di�erent
groups are only considered once. In this way, all of the volume
groups in a sketch are treated as a single mass to �ll in, which allows
us to handle the intersections of volume groups nicely. Additionally,
some volume groups can be hollow, and so we specify cells that are
meant to be hollow. Any cells with that label are treated as already
�lled in by the system.

With those, we have the set of cells that must be �lled in. Next,
we include the piece groups, using the positions from the sketch to
place them. Any of the cells from the volumes that these groups
intersect with are treated as �lled in (as the piece group is already
occupying those spaces), neatly handling the issue of intersections
with piece groups.

At this point, all of the requite information is required for specify-
ing the space that needs to be �lled in. �e last thing to incorporate
before starting the solving process is an integrity constraint. One
of the main ways that Lego insures that their models are stable is
by interweaving the pieces: having one row of bricks face hori-
zontally, and the next vertical. �is is accomplished by enforcing
the constraint that no two identical bricks can be stacked on top
of each other. �is is a crude strategy, but an e�ective one, as it
ensures the kind of interweaving seen in the corners of real world
Lego models.

Structural integrity is also increased by having the solver op-
timize for the minimum number of pieces included in the �nal
output. �is ensures that each individual piece covers as much area
as possible, hence increasing the stability of the �nal model.

For this step, our car model is not the best example, considering
that the only volume group is the small piece at the end. So, instead
consider the Twin Squares model shown in Figure 1. Here, we have

two 6x2x6 volume groups of equal size, si�ing next to each other,
one at position (1,1,1) and the other at position (7,1,1).

From this, we also have that each has a 4x2x4 empty area in
their centers, in this case starting at position (2,1,2) and (8,1,2)
respectively. With this information in place, we are ready to solve
for the set of pieces that �ll in the areas.

Notice that, as shown in Figure 1, in our resulting model we
have a central area with bricks of width 2. �is comes from the fact
that we meld together the volume areas, and as such, unite the two
areas that are touching each other to form the whole presented.
At the end of this step, we have our �nal model, and it su�ces to
render it out.

6 CONCLUSION
In this paper, we describe an ASP-based system for solving for Lego
models, starting with a speci�cation of the model and producing
a sketch of the model, followed by the �nal model itself. In this
way, we have provided the groundwork for future endeavors into
generative 3D structures for domains that feature an existing set
of pieces, prominently games with snap-together models or voxel
systems.

REFERENCES
[1] Evgenia Antonova. 2015. Applying Answer Set Programming in Game Level Design.

Master’s thesis. Aalto University, Espoo, Finland.
[2] Armando de la Re, Francisco Abad, Emilio Camahort, and M Carmen Juan. 2009.

Tools for Procedural Generation of Plants in Virtual Scenes. In International
Conference on Computational Science. Springer, 801–810.

[3] Alexandre Devert, Nicolas Bredeche, and Marc Schoenauer. 2006. Blindbuilder: A
New Encoding to Evolve Lego-like Structures. In European Conference on Genetic
Programming. Springer, 61–72.

[4] �omas Eiter, Giovamba�ista Ianni, and �omas Krennwallner. 2009. Answer Set
Programming: A Primer. In ReasoningWeb. Semantic Technologies for Information
Systems. Springer, 40–110.

[5] Pablo Funes and Jordan Pollack. 1999. Computer Evolution of Buildable Objects.
In Evolutionary Design by Computers, Peter J. Bentley (Ed.). Morgan Kaufmann,
Chapter 17, 387–403.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2014.
Clingo = ASP + Control: Preliminary Report. arXiv preprint arXiv:1405.3694
(2014).

[7] Mark Hendrikx, Sebastiaan Meijer, Joeri van der Velden, and Alexandru Iosup.
2013. Procedural Content Generation for Games: A Survey. ACM Transactions on
Multimedia Computing, Communications, and Applications 9, 1 (February 2013),
Article 1.

[8] Benjamin Mark, Tudor Berechet, Tobias Mahlmann, and Julian Togelius. 2015.
Procedural Generation of 3D Caves for Games on the GPU.. In FDG.

[9] Benachir Medjdoub and Bernard Yannou. 2001. Dynamic Space Ordering at a
Topological Level in Space Planning. Arti�cial Intelligence in Engineering 15, 1
(2001), 47–60.

[10] Paul Merrell. 2007. Example-based Model Synthesis. In Proceedings of the 2007
Symposium on Interactive 3D Graphics and Games. ACM, 105–112.

[11] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
2006. Procedural Modeling of Buildings. In Acm Transactions On Graphics (Tog),
Vol. 25. ACM, 614–623.

[12] Yoav IH Parish and Pascal Müller. 2001. Procedural Modeling of Cities. In
Proceedings of SIGGRAPH 2001. ACM, 301–308.

[13] Pavel Petrovic. 2001. Solving LEGO Brick Layout Problem Using Evolutionary
Algorithms. In Proceedings to Norwegian Conference on Computer Science.

[14] Francisco Regateiro, João Bento, and Joaquim Dias. 2012. Floor Plan Design using
Block Algebra and Constraint Satisfaction. Advanced Engineering Informatics 26,
2 (2012), 361–382.

[15] Adam M Smith and Michael Mateas. 2011. Answer Set Programming for Pro-
cedural Content Generation: A Design Space Approach. IEEE Transactions on
Computational Intelligence and AI in Games 3, 3 (2011), 187–200.

[16] Romain Testuz, Yuliy Schwartzburg, and Mark Pauly. 2013. Automatic Generation
of Constructable Brick Sculptures.. In Eurographics (Short Papers). 81–84.

[17] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003.
Instant Architecture. In SIGGRAPH 2003. 669–677.

	Abstract
	1 Introduction
	2 Prior Work
	3 System Overview
	4 Object Representation
	5 Object Realization
	5.1 Sketch Step
	5.2 Realization Step

	6 Conclusion
	References

